Soldier Systems Technology Roadmap Weapons: Lethal and Non-Lethal Workshop

Weapon Effects Characterization

Benoît Anctil Biokinetics

November 24-26, 2009 Delta Chelsea Hotel Toronto, Ont.

Government Gouvernement of Canada du Canada

KEY FACTORS

- What are the optimal terminal effects for the soldier's weapon ?
- What are the techniques available to measure these terminal effects?
- What are the advantages & limitations of these techniques?
- Is there an accepted standard?
- Which technique should be considered?
- Can it be improved?

WEAPON EFFECTS CHARACTERIZATION

WEAPON EFFECTS CHARACTERIZATION

PROJECTILE BEHAVIOR ASSESSMENT

- Dynamic
 - energy dumped in the simulant (tissue damage measurement)
 - high speed cameras or flash Xray
 - expensive
- Static
 - direct measurement of simulant damage and projectile state
 - after the event
 - still photography

BALLISTIC GELATIN

- living muscle tissue
- homogenous
- permanent vs. temporary cavity
- static vs. dynamic
- limited shelf life
- extensively used
- Fackler 10% @ 4°C vs.
 NATO 20% @ 10°C

Gel block slice to evaluate total crack length

BALLISTIC SOAP

- living muscle tissue
- homogenous
- energy dumped
- permanent cavity
- static only
- long shelf life
- room temperature
- expensive material
- non elastic
- accurate

SYNTHETIC GELS

- living muscle tissue
- homogenous
- permanent vs. temporary cavity
- static vs. dynamic
- room temperature
- reusable
- cost?
- validation?

SUMMARY

Characteristics	Soap	Gelatine	Perma-gel
Handling			
Acquisition			
Temporary cavity measurement			
Permanent cavity measurement			
Biofidelity			?
Projectile's dynamic behavior			
Measuring energy deposit			
Reuse			

- all represent living muscle tissue ?
- similar density
- isotropic
- homogenous

but ...

- human body is not homogenous
- nor isotropic

ALTERNATIVES

- hybrid surrogates
 - living muscle tissue
 - bones

- biological surrogates
 - animal (swine, sheep,...)
 - live
 - dead
 - cadavers

NUMERICAL MODELING

NUMERICAL MODELING

- help understanding of the phenomena that are difficult to examine using experimental methods
- optimization of experimental trials
- save time and money
- fast trade up analysis for acquisition or design systems (parametric studies)
- need to model each projectile
- proper validation remains the main challenge
 - adequate fracture model ?

NON PENETRATING EFFECTS BLUNT IMPACT - NLW

- velocity-range data, impact force measurement
- penetrating limit assessment (safety)
- head, thorax and eye injury assessment

BLUNT IMPACT - NLW

⁷⁷ 20 3 22 23 24 25 25 27 V 0.530

CONCLUSIONS

- weapon effects characterization is essential for future weapon development
- no single surrogate for the different effects
- for penetrating effects, no consensus on best approach
- hybrid surrogate more suitable ?
- more R&D and collaboration required

#