Injury Assessment with Physical Surrogates

Presented by: Nicholas Shewchenko

Presented for: Blast Injury Testing Conference IV Arlington, VA April 6, 2005

Biokinetics and Associates Ltd., Ottawa, Canada 2005 www.Biokinetics.com

Surrogate Development

Types

-biological samples -biological models -physical models -numerical models -hybrid models Considerations -accuracy -3R (repeatability, reproducibility, robustness) -cost, ease of use -maintenance -calibration -validation

Physical Surrogates – Head Injury

Injuries: -focal and diffuse -acute/mild -skull fracture, tissue disruption

Threats: -ballistic impacts -blunt impact -global acceleration

Head Surrogate for Ballistic Impact

Surrogate

Test method for ballistic helmet injury risk assessment

Forces from force transducers correlated to injury risk relationship

Head Surrogate for Concussions

SPORTS Football

Head to head collisions resulting in concussed and non-concussed player

No injury tolerances available for mild head injuries

Kinematics obtained from field

Physical Surrogates - Neck

VEHICLE SAFETY

Surrogate kinematics crucial to head/neck injury assessment Ref: DRI

Neck biofidelity based on kinematics of volunteers

Torso Surrogate for Ballistics

DEFENCE ballistic

Threat: Ballistic loading provides combined focal and distributed loading depending on projectile and armour

Mechanism: Chest wall motion transfers impact energy to internal organs

Biomechanics: Animal models and PMHS, injuries and biofidelity

Leg Surrogate for Blast Protection

Surrogate Development - Summary

- Define the problem (injuries, threats)
- Prioritize requirements and define constraints
- Quantify biofidelity needs
- Quantify injury criteria based on tolerance
- Define biomechanical predictors of injury
- Identify transducer and measurement needs
- Develop and validate surrogate
 - Use surrogate for validated loading regimes

