Performance Evaluation of Personal Protection Systems

Nicholas Shewchenko Biokinetics and Associates Ltd.

DEFENCE SECURITY INNOVATION November 2005

© Biokinetics and Associates Ltd., Ottawa, Canada 2005

Current and Future Environments

- Threats: evolving types, higher severity, poorly quantified
- Warfare transformations (asymmetric, unconventional)
- Army transformations (roles, adaptation, expansion, modernization)

Current and Future Environments

Injuries reflect the threats and environment

Changes can cause uncertainty in diagnosis, prevention and assessment of injuries

Current injury patterns:

- New areas of injury
- Injury types different
- Injury severity range increased

"Brain injuries lead Iraq war injuries", UPI "Key Iraq wound: Brain trauma", US Today "Canadian escapes injury in Kabul blast", CBC "New Helmet Doesn't Fit Iraq", Wall Street Journal

Threats & Env.

Immediate Needs

Prevent, Detect

Protect, Mitigate

Diagnose, Treat, Rehab.

Injury Risk Management (IRM)

DEFER

SECULIT

IRM - Threats

TYPES:

- Ballistic
- Conventional blast weapons
- IED Improvised Explosive Devices
- EBW Enhanced Blast Weapons
- Blunt trauma
- CBR Chem., Bio., Radiological
- Directed energy

EFFECTS:

- Overpressure
- Burns
- Blunt trauma
- PenetrationToxicity

IRM - Injuries

skull fracturesclosed head injuriessoft tissue injuries

rib/ sternum fracturessoft tissue injuries(heart, lungs)

calcaneus, tibia fx
soft tissue disruption
amputations

IRM – Priorities

IRM – Surrogates for Injury Assessment

Surrogates: -biological tissues -biological models dead & live animals, humans -physical models -prediction models numerical, empirical, analytical -hybrid models Balance of:
biofidelity
injury
prediction
3Rs:
repeatability
reproducibility
robustness

- \$\$ cost
- ease of:

use maintenance calibration validation

IRM – Surrogate Considerations

Surrogate Qualities

DÉFENCE SECURITY

Ballistics Effects – Torso Surrogate

Injuries

Torso: -penetration -blunt trauma Types: -fractures of ribs, sternum -rupture of heart and lungs

Projectiles: -bullets -fragments -debris Types: -caliber -speed -mass -shape -material

Threats

Ballistic Effects – Torso Surrogate

Torso Surrogate

Torso Impact Membrane: -biofidelic (animals/cadavers) -injury prediction criteria -armour fits better -3R, low cost, ease of use -used to assess soft and hard body armour **Research Ongoing:** DRDC Valcartier, **Biokinetics**, TSWG

BABT Test Methodology

Injury Assessment of BABT

SECULIT

Ballistic Effects – Head Surrogate

Head: -penetration -blunt trauma Types: -skull fx -brain injury (acute/mild) -global acceleration

Injuries

Projectiles: -bullets -fragments -debris Types: -caliber -speed -mass -shape -material

Threats

Ballistic Effects – Head Surrogate

Head Surrogate

Load Sensing Headform: -biofidelic with transfer function (cadaver vs dummy) -injury prediction criteria -used to assess ballistic helmet performance

-Research Ongoing: DRDC Valcartier, Biokinetics, TSWG

Test Methodology

Skull Pressure Measurement System

Injury risk based on skull pressure

AP Mine Effects – Leg Surrogate

Injuries

Lower Leg: -blast, load transmission, acceleration Types: -fx of heel, ankle, tibia -soft tissue disruption -infections

Threats

AP Mines: -blast -fragments -soil and debris ejecta

AP Mine Effects – Leg Surrogate

Lower Leg Surrogate

Complex Lower Leg (CLL): -represents skeletal and soft tissue disruption -can be related to injury assessments -recognized by the NATO HFM-089 / TG-024 -used to assess footwear -Research Ongoing: **DRDC Valcartier**

CLL bone and flesh

Boot evaluation

AP mine blast with FSL

AV Mine Blast Effects – Leg Surrogates

Lower Leg Surrogates

Mechanical Legs: -biofidelic under impact conditions -can be related to impact injury criteria -used to assess loading

Surrogate lower legs and biofidelity corridors

-Research Ongoing: DRDC Valcartier

CLL on Hybrid III for AV mine blast testing

DÉFENCE SECULITY

Blast Effects – Head & Torso Surrogates

Injuries

Head&Torso: -overpressure -fragments -blunt trauma -acceleration -thermal loads

EBW Enhanced Blast Weapons -sustained pressure -distance -complex vs

free field

Threats

Blast Effects – Head & Torso Surrogates

Blast Surrogate

MABIL: -head and torso to study blast loading -compliments Hybrid III to assess blunt trauma and acceleration effects -used to rank PPE -Research Ongoing: DRDC Valcartier, **Biokinetics**

Mannequin for Assessment of Blast Incapacitation and Lethality

Characterization of EBW threat

Blast Effects – Head & Torso Surrogate

MABIL

MABIL head used to measure peak pressure and impulse + optical.

MABIL torso used to measure chest wall acceleration and pressure for injury assessment.

Blast Effects – Head & Torso Surrogate

MABIL

Prediction of lung injury from pressure measurements.

DEFENCE SECURITY

MABIL torso response to blast loading

IRM – Protective System Evaluation

Protection Requirements

- **Threats Defined**
- **Test Methods**
- Surrogates
- Performance Requirements
- Protective Equipment Development

DNL

Evaluation of Protective Equipment

- Results of research feeding into several DRDC sponsored programs:
 - head/torso/leg injury assessment and protection
 - Surrogate developments CLL, MABIL, Ballistic Headform, TIM, Blast Headform
 - Technology Demonstration
 Programs

Engineered Solutions for Impact Protection

Questions?

